Oil and Gas Noise

Noise from oil and gas development comes from a number of sources: truck traffic, drilling and completion activities, well pumps and compressors. For some landowners, noise from oil and gas operations is so loud or of such a different sound quality that it makes them feel as if they are living in an industrial zone.

For people who live in rural areas, the arrival of a new, industrial noise source can greatly disturb the natural environmental soundscape and has even driven some residents from their homes.

Landowners often complain about noise levels associated with natural gas compressors. The noise level varies with the size of the compressor and distance from the compressor; and it changes with shifts in wind direction and intensity. According to the Powder River Basin Resource Council, "Depending on the wind direction, the roar of a field compressor can be heard three to four miles from the site. Near the compressor stations, people need to shout to make themselves heard over the sound of the engines."

One Wyoming landowner has described compressor noise in this way:

Now comes the second phase. The dreadful noise generated by a nearby large compressor station. Noise that was so loud that our dog was too frightened to go outside to do his business without a lot of coaxing. Noise that sounds like a jet plane circling over your house for 24 hours a day. Noise that is constant. Noise that drives people to the breaking point. My neighbor called the sheriff, state officials and even the governor and was told nothing could be done about the noise. Like I said, the noise drives people to the breaking point, and my neighbor fired 17 rifle shots toward the station.
--Excerpted from CBM Destroys Retirement Dream.

How loud is oil and gas noise?

A study in La Plata County, Colorado, reported noise levels for a number of oil and gas activities:


Typical compressor station 50 dBA (375 feet from property boundary)
Pumping units 50 dBA (325 feet from well pad)
Fuel and water trucks 68 dBA (500 feet from source)
Crane for hoisting rigs 68 dBA (500 feet from source)
Concrete pump used during drilling 62 dBA (500 feet from source)
Average well construction site 65 dBA (500 feet from source)


The Bureau of Land Management (BLM) published different numbers. At 50 feet from the source, the measured noise levels were: well drilling - 83dBA; pump jack operations - 82 dBA; produced water injection facilities - 71 dBA; and gas compressor facilities - 89 dBA.[5]

In the same study, BLM also reported typical noise levels from construction equipment and oil and gas activity. These are presented in the chart below. Again, the sound levels were taken at a distance of 50 feet (15 meters). Estimates of noise attenuation at distances greater than 50 feet can be made by reducing noise levels by a factor of 6 dBA (A-weighted sound levels) for each doubling of distance. The actual noise levels experienced by a receptor, however, will depend on the distance between the receptor and the equipment, the topography, vegetation, and meteorological conditions (e.g., wind speed and direction, temperature, humidity).

Rationale for a 45 dBA (or lower) residential noise standard

In many residential neighborhoods, especially low density and rural areas, the nighttime noise level is very quiet. According to a Colorado-Based noise consultant, ambient noise levels in residential areas are frequently as low as 35 dBA during the nighttime, and are occasionally lower [6]. In these situations, if oil and gas facilities are allowed to emit noise at 45 dBA, the noise will be perceived by many as being twice as loud as the ambient noise in the area. In Alberta, Canada, it has been estimated that the ambient rural noise level is 35 dBA at night.

Noise standards of 45 dBA LEQ (nighttime) or lower are used in many jurisdictions that have oil and gas operations.

There are several jurisdictions that require oil and gas operators to meet a 45 decibel level during the night-time, in residential areas. Typically, noise measurements are taken outside, at a certain distance from or at the property line of the receiver (e.g., a house, hospital, etc.). These are called "receptor-based" noise standards. In some cases, noise measurements are taken a certain distance from the noise source ("source-based" standards). In 2005, Colorado amended its noise rule from a "receptor-based" to a "source-based" standard, requiring noise measurements to be taken 350 feet from the oil and gas noise source.

Examples of residential noise requirements of 45 dBA for oil and gas operations



Measurement Location

Nighttime level (dBA)

World Bank - new oil and gas projects in residential areas At receptors or edge of property boundary 45

Alberta, Canada -

low traffic noise, low density housing

med. traffic, med. density

high traffic, high density

15 metres from a dwelling/receptor




Sacramento County, CA At residential property line 45
City of Longbeach, CA At residential property line 45
Colorado 350 feet from noise source 45


45 dBA is achievable, even as close as 350 feet from the noise source

There are numerous examples that show that 40 - 45 dBA is achievable at 350 feet from the source. The City of Farmington, New Mexico uses "1 dBA over ambient" as a standard for all wells constructed in the city. In January of 2005, OGAP staff conducted sound measurements at well sites in the City of Farmington. Noise levels measured at 300 feet from the noise source varied from 39 to 49 dBA. It is estimated that if measurements had been taken at 350, these sound levels would have been in the range of 37 to 47 dBA. For more information, please download the OGAP/SJCA submission to the COGCC.

It is not cost prohibitive to achieve 45 dBA at 350 from the noise source

As part of its submission to the Colorado OIl and Gas Conservation Commission noise rule hearing, OGAP prepared a chart of noise mitigation cost estimates for oil and gas facilities that have achieved the 40-45 dBA noise level.

Sources of Noise

Noise from pumpjacks

A low-profile pumping unit can replace the conventional unit, which uses a 30- to 40-foot beam and looks like a giant, bobbing horse's head. The conventional pump is run on a gas- or diesel-powered engine, which is noisy and smelly. Alternatives to this large pump include using a pneumatic pumping device that doesn't require an engine, therefore, produces little or no noise. This pump stands about 10 to 15-feet tall. According to one company, pneumatic pumps will not function correctly if a lot of water is extracted while extracting methane gas. Consequently, when larger amounts of water are produced, an alterative to the standard beam pump is the progressive cavity pump. These pumps come in different shapes and sizes, and like the pneumatic pump, they can run on electric motors, and therefore, be much quieter than conventional pumps.

Vehicle Noise

Noise created by operators constantly driving in and out from the well pad to monitor well production can be mitigated using an automated monitoring system, which allows wells to be monitored remotely, e.g., from the company's office. Vehicle noise may also be controlled to some extent by limiting the hours that industry employees use residential roads for accessing wells (e.g., limiting vehicles to the hours of 7:00 a.m. to 9:00 p.m., except in emergency situations).

Engine noise

To mitigate noise impacts from engines, sound barriers made out steel and sound-absorbing insulation (i.e., NOT styrofoam) may be used. Sound barriers may be placed in an L-shape above the engine, and they extend past the sides of the engine. To reduce noise in sensitive areas, pumpjacks, engines, or well-site or field compressors may be entirely enclosed in a sound-insulated building.

Some engines can operate at a constant number of revolutions per minute (RPM), which reduces the often annoying fluctuating noise caused by engines that speed up and slow down. Mufflers, like those used for automobile engines, can be used to minimize engine noise. In noise sensitive situations, hospital-grade mufflers used in series can be more effective at reducing noise from engines.

In some situations, natural gas or diesel engines can be replaced with electric motors. These motors, if properly installed, tend to be much less noisy than their engine counterparts. The use of electrical motors depends on the availability of electricity, and whether or not a company is willing to run an electrical line to the site.

Compressor noise

Noise from compressors can be mitigated most effectively by treating each significant oise source: gas turbines or engines, compressors, exhaust outlets and air inlets, and cooling and ventilation fans. Abatement may involve changing the blades on fans, which can change the frequency of sound emitted, thereby removing the annoying tones. Engine noise can be muffled using automotive-type mufflers, or by housing the engines in acoustically insulated structures. Also, the entire compressor can be housed in an acoustically insulated building.

Cost of Mitigation

Some oil and gas opearators refuse to apply noise mitigation to their sites, using the excuse that mitigation is too expensive. If noise mitigation measures are installed when the site is constructed, rather than attempting to abate the noise after the equipment is installed, the costs are much more affordable. OGAP has compiled some examples of the costs of mitigation.

Noise and its Effects on Human Health

There are adverse physical and mental effects from noise. For example, prolonged periods of exposure to 65 dBA can cause mental and bodily fatigue. Furthermore, noise can affect the quantity and quality of sleep; cause permanent hearing damage; contribute to the development or aggravation of heart and circulatory diseases; and transform a person's initial annoyance into more extreme emotional responses and behavior.

Unfortunately, many of the health effects of noise due to oil and gas operations have not been scientifically documented. The lack of scientific study does not mean, however, that noise issues related to oil and gas are insignificant. The loud, continuous noise during the drilling phase; the loud short-term noises from flaring or hydraulic fracturing; the intermittent whine of poorly maintained pump jacks and other equipment; and the loud or low frequency noise from compressors are common complaints related to oil and gas development. Numerous citizens have reported disruption of sleep and increased anxiety caused by noise from oil and gas developments.[10]

Noise and its Effects on Wildlife

Noise effects wildlife in a variety of different ways. It can cause the temporary or permanent displacement of animals and birds from particular areas. It can also have physiological effects that are detrimental to wildlife health.

The Draft Resource Management Plan for leasing federal lands in southern New Mexico states that in some cases, federally threatened and endangered wildlife species may be affected by elevated noise levels. For example:

In the final Environmental Impact Statement for the Jonah natural gas field, the BLM stated that:

It is likely that noise already has contributed to the apparent decrease in wildlife use on and adjacent to the Jonah Infill Drilling Project Area (JIDPA), with observed decreases in raptor nesting activity and productivity, male greater sage-grouse lek attendance and sage-grouse nesting within the JIDPA having been reported over the past several years. Data also suggest that noise may contribute to disturbance and/or departure of greater sage-grouse from area leks. [13]

For more information:


[5] Bureau of Land Management. Oct.2000. Draft RMPA/EIS for Federal Fluid Minerals Leasing and Development in Sierra and Otero Counties. Page 4-29.

[6] McGregor, H.N. (Engineering Dynamics, Inc., Englewood, CO). Propagation of Noise from Gas Compression Facilities Located in Mountainous Terrain. (COGCC Noise Stakeholder Meeting Handout.)

[10] Clarren, Rebecca. "Status quo reigns in New Mexico," High Country News. Sept. 25, 2000. p. 10.

[13] BLM. Jan. 2006. Final Environmental Impact Statement, Jonah Infill Drilling Project. Sublette County, WY. Chapter. 4. p. 4-48.

Tagged with: wildlife, public health, noise pollution, noise, fracking

On Twitter

Surprise! #Texas #drilling records suggest lax state enforcement | @brett_shipp in @wfaachannel8 #fracking
.@bstorrow, why wasn't Arch required to post full reclamation bond before bankruptcy? Barn closing after horse gone, no? 15% is a pittance.

On Facebook